Berkeley Environmental Health Sciences

Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006–2015 Births

Kathy Tran, PhD UC Berkeley Generation Chemical Webinar, CHE Feb 25, 2021

0

CA Production: 7th Top US Crude Oil Producer (2020)

Rankings: Crude Oil Production, July 2020 (thousand barrels per day)

0

Source: US Energy Information Administration, 2018

Routes of Exposure

• Potential direct health impacts

- Air pollution
 - e.g. particulate matter
- Water pollution
 - e.g. benzene
- Potential indirect health impacts
 - Noise
 - e.g. equipment
 - Excessive lighting

0

Prior Research on Perinatal Health Impacts

0

Birth Outcome	# Studies that evaluated outcome	# Studies that found significant increased risk
Preterm birth	5	3
Small-for- gestational age	4	2
Low birth weight	2	1
Decreased birth weight	5	2

Note: Location (PA, CO, TX), control groups, exposure definition, regression models, and covariates in adjusted models vary by study 4

Study Design: Retrospective cohort study

Question: What is the relationship between prenatal exposure to oil+gas development (OGD) and birth outcomes in CA?

• Do associations differ by urban/rural community type?

Hypothesis: Prenatal exposure to OGD increases risk or likelihood of adverse birth outcomes

Statistical analysis: Linear/logistic regression modeling

Data Sources

- Birth records: CA Dept. Public Health birth records
- Well records: CA Dept. of Conservation

Covariates

- Individual: birth records
- Area-level
 - US Census
 - Center for Air, Climate, and Energy Solutions (CACES)
 - CA Air Resources Board

Study population

- Birth years: 2006-2015
- Exposure period: 2005-2015
- Study population (N=2.9M births)
 - 4 air basins:
 - Sacramento Valley
 - San Joaquin Valley
 - South Central Coast
 - Southern California
 - Births with at least 1 well within 10 km (~6 miles) of maternal residence

0

Birth Outcomes

Outcome	Definition
Low birth weight (LBW)	Birth weight <2500 grams
Preterm birth (PTB)	<37 weeks of gestation
Small-for-gestational age (SGA)	Birth weight less than the US sex-specific 10th percentile of weight for each week of gestation
Term birth weight (g)	Birth weight in grams, born after 37 weeks

Exposure to Two Well Types

1) Active well production volume (total)

2) Inactive well count

Defining Exposure

Total study population

Births within 10 km of at least one active or inactive well during pregnancy

Exposed

Births with active/inactive well(s) within 1 km

<u>Unexposed</u>

Births without any wells within 1 km

Defining Exposure

Total study population

Births within 10 km of at least one active or inactive well during pregnancy

Exposed

Births with active/inactive well(s) within 1 km

<u>Unexposed</u>

Births without any wells within 1 km

Exposure Metrics

Production Volume

- Total production volume of oil and gas wells within 1 km
 - Unit: barrels of oil equivalent (BOE)
- Categories:
 - Reference: No production volume
 - Moderate: 1-100 BOE/day
 - High: 100+ BOE/day

Inactive Wells

• Total count within 1 km

- Categories:
 - Reference: No inactive wells
 - Low: 1 inactive well
 - Moderate: 2-5 inactive wells
 - High: 6+ inactive wells

Statistical Approach: Multivariable Regression

- Regression models
 - Logistic (binary): LBW, PTB, SGA
 - Linear (continuous): term birth weight
 - Accounted for clustering within census tracts
- Adjusted for individual and area-level covariates
 - Child: gender, birth month and year
 - Mother: age, race-ethnicity, education, metric for adequacy for prenatal care, parity
 - Area-level: air basin, urban/rural status, NO₂ concentration, metric for income inequality

Results: Exposure to Active Well Production Volume

b) Preterm birth a) Low birth weight 1.8 1.8 Production Production Mod 🔺 High Mod 🔺 High category category 1.6 1.6 Odds Ratio and 95% CI Odds Ratio and 95% CI 1.4 1.4 1.2 1.2 1.0.0 0.8 0.8 Rural Urban Rural Urban

Note: Models adjusted for inactive well count + covariates

Results: Exposure to Active Well Production Volume

c) Small for gestaional age

d) Term birth weight

Note: Models adjusted for inactive well count + covariates

0

0

Results: Exposure to Inactive Wells

Results Summary

- Higher production volume from active wells is associated with
 - Increased odds of LBW and SGA
 - Decreased term birth weight
- Highly productive wells in rural areas may pose greatest risk
- Robust results: sensitivity analyses other sources of pollution or maternal risk factors did not change effect estimates

Interpretation

- Why active production?
 - Off-gassing of pollutants at wellheads
 - Excessive noise from equipment during production

• Why rural?

- Differences in source contribution and exposure patterns
 - Unique signal to OGD may be more difficult to parse
 - Observed modest effect for SGA in urban areas

0

Limitations + Strengths

Limitations

0

- Exposure pathways remain unclear
- Unmeasured individual/arealevel confounding
 - e.g. Other sources of pollution
- Exposure misclassification
 - Maternal residential/occupational mobility

Strengths

0

- One of two studies in CA
- Unique exposure metrics
 - Inactive wells
 - Active production volume
- Evaluation of effects by urban/rural communities

Results 0

Discussion

0

Public Health Implications

Research informs regulatory decision-making

0

- Increase air and water monitoring efforts in and around wells
- Update setback distances
- Consider sensitive populations in regulations
- Consider production volume in other analyses

Tran KV, Casey JA, Cushing LJ, Morello-Frosch R. Residential proximity to oil and gas development and birth outcomes in California: a retrospective cohort study. Environmental Health Perspectives. 2020 Jun 03;128(6):067001-13.

Environmental Health Perspectives		OPEN ACCESS	Enter search terms	s here C	Search
HOME CURRENT ISSUE ARCHIVES COLLECTIONS ~ 中文翻译 ~ AUTHOF	RS V ABOUT V				🌲 <
Vol. 128, No. 6 Research	👌 Open Access	Figures	 References 	Related	i Details
Residential Proximity to Oil and Gas Develor Outcomes in California: A Retrospective Co Births Kathy V. Tran 🖂 Joan A. Casey, Lara J. Cushing, and Rachel Morello-Frosch 🖂	Cited By Cushing L, Va (2020) Flaring and Birth Out Environment publication d	vra-Musser K, Cha from Unconventio tcomes in the Eagle tal Health Perspe ate: 1-Jul-2020.	u K, Franklin M ar onal Oil and Gas I e Ford Shale in So ctives , 128:7, On	Ad Johnston J Development buth Texas, line	
Published: 3 June 2020 CID: 067001 https://doi.org/10.1289/EHP5842 Cited by: 1	🖹 Supplemental Materials 🌾 Tools ≺ Share	Recommend	ed		~

UC Berkeley Public Health

Rachel Morello-Frosch Joan Casey Lara Cushing

Funding Sources

California Air Resources Board Research Grant (#18RDo18) NSF SAGE-IGERT (#1144885) PSE for Energy Health Seth Shonkoff

CA Air Resources Board

Cynthia Garcia Alvaro Alvarado

Backup slides

Estimates: LBW + Exposure to production volume

Prod volume categories	No BO	DE (ref)	1-100 BOE/day GT 100				100 BOE/day			
	n	Cases (%)	п	Cases	aOR (95% CI)	EM p-value	n	Cases	aOR (95% CI)	EM p-value
Rural ^a				(/0)		p fuiture		(/0)		praiae
Entire pregnancy	318,488	14,451 (5)	8,957	400 (4)	1.11 (0.97, 1.27)	0.81	1,689	94 (6)	1.40 (1.14, 1.71)	0.01
Trimester 1	318,629	14,457 (5)	8,809	394 (4)	1.12 (0.98, 1.28)	0.67	1,696	94 (6)	1.39 (1.11, 1.75)	0.002
Trimester 2	318,675	14,461 (5)	8,258	367 (4)	1.10 (0.96, 1.26)	1.00	2,201	117 (5)	1.35 (1.13, 1.61)	0.002
Trimester 3	317,913	13,684 (4)	8,790	359 (4)	1.07 (0.93, 1.23)	1.00	1,420	77 (5)	1.38 (1.11, 1.72)	0.01
Urban ^a										
Entire pregnancy	2,482,413	127,533 (5)	59,685	3,161 (5)	1.04 (1.00, 1.09)		46,857	2,461 (5)	0.99 (0.95, 1.04)	
Trimester 1	2,483,224	127,576 (5)	58,967	3,119 (5)	1.04 (0.99, 1.09)		46,764	2,460 (5)	1.00 (0.95, 1.04)	
Trimester 2	2,483,156	127,566 (5)	55,448	2,950 (5)	1.05 (1.00, 1.10)		50,351	2,639 (5)	0.99 (0.95, 1.04)	
Trimester 3	2,475,357	120,289 (5)	64,045	3,298 (5)	1.06 (1.02, 1.11)		40,776	1,929 (5)	0.93 (0.88, 0.98)	

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. ^aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO₂ concentration, and ICE for income.

Estimates: PTB + Exposure to production volume

Prod volume categories	No Bo	OE (ref)	1-100 BOE/day GT 100 BOE/da				100 BOE/day			
						EM				EM
	n	Cases (%)	п	Cases (%)	aOR (95% CI)	p-value	n	Cases (%)	aOR (95% CI)	p-value
Rural ^a										
Entire pregnancy	318,488	20,845 (7)	8,957	618 (7)	1.03 (0.91, 1.18)	1.00	1,689	99 (6)	0.97 (0.78, 1.21)	1.00
Trimester 1	318,629	20,857 (7)	8,809	604 (7)	1.02 (0.90, 1.16)	1.00	1,696	101 (6)	1.00 (0.80, 1.24)	1.00
Trimester 2	318,675	20,850 (7)	8,258	582 (7)	1.06 (0.94, 1.21)	1.00	2,201	130 (6)	0.98 (0.82, 1.18)	1.00
Trimester 3	317,913	19,899 (6)	8,790	575 (7)	1.03 (0.90, 1.17)	1.00	1,420	77 (5)	0.92 (0.71, 1.19)	0.84
Urban ^a										
Entire pregnancy	2,482,413	170,691 (7)	59,685	4,120 (7)	1.01 (0.97, 1.06)		46,857	3,087 (7)	0.95 (0.90, 1.00)	
Trimester 1	2,483,224	170,735 (7)	58,967	4,088 (7)	1.01 (0.97, 1.06)		46,764	3,075 (7)	0.95 (0.91, 1.00)	
Trimester 2	2,483,156	170,728 (7)	55,448	3,868 (7)	1.02 (0.98, 1.07)		50,351	3,302 (7)	0.95 (0.90, 1.00)	
Trimester 3	2,475,357	162,385 (7)	64,045	4,436 (7)	1.06 (1.02, 1.11)		40,776	2,300 (6)	0.82 (0.77, 0.88)	

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification.

^aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO₂ concentration, and ICE for income.

Estimates: SGA + Exposure to production volume

Prod volume categories	No B	OE (ref)		1-1	00 BOE/day		GT 100 BOE/day			
						EM				EM
	n	Cases (%)	п	Cases (%)	aOR (95% CI)	p-value	n	Cases (%)	aOR (95% CI)	p-value
Rural ^a										
Entire pregnancy	318,488	33,034 (10)	8,957	966 (11)	1.07 (0.97, 1.19)	0.99	1,689	211 (13)	1.22 (1.02, 1.45)	0.14
Trimester 1	318,629	33,056 (10)	8,809	937 (11)	1.05 (0.95, 1.16)	1.00	1,696	218 (13)	1.25 (1.04, 1.50)	0.07
Trimester 2	318,675	33,058 (10)	8,258	889 (11)	1.07 (0.96, 1.19)	1.00	2,201	264 (12)	1.17 (1.02, 1.35)	0.20
Trimester 3	317,913	33,038 (10)	8,790	948 (11)	1.08 (0.97, 1.19)	0.90	1,420	183 (13)	1.24 (1.02, 1.50)	0.14
Urban ^a										
Entire pregnancy	2,482,413	290,654 (12)	59,685	7,339 (12)	1.03 (1.00, 1.07)		46,857	5,739 (12)	1.04 (1.01, 1.07)	
Trimester 1	2,483,224	290,768 (12)	58,967	7,246 (12)	1.03 (1.00, 1.07)		46,764	5,718 (12)	1.04 (1.00, 1.07)	
Trimester 2	2,483,156	290,748 (12)	55,448	6,834 (12)	1.03 (1.00, 1.07)		50,351	6,150 (12)	1.04 (1.00, 1.07)	
Trimester 3	2,475,357	290,367 (12)	64,045	7,858 (12)	1.03 (1.00, 1.07)		40,776	5,030 (12)	1.04 (1.01, 1.08)	

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. ^aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO₂ concentration, and ICE for income.

Estimates: Term BW + Exposure to production volume

Prod volume categories	No BOE (ref)		1-100 BOE/day			GT 100 BOE/day			
		EM					EM		
	n	n	aDiff (95% CI)	p-value	n	aDiff (95% CI)	p-value		
Rural ^a									
Entire pregnancy	297,643	8,339	3 (-11, 18)	0.62	1,590	-36 (-54, -17)	0.001		
Trimester 1	297,772	8,205	4 (-10, 18)	0.47	1,595	-39 (-59, -19)	0.0003		
Trimester 2	297,825	7,676	3 (-12, 18)	0.71	2,071	-27 (-45, -8)	0.01		
Trimester 3	298,014	8,215	4 (-11, 20)	0.41	1,343	-30 (-48, -12)	0.001		
Urban ^a									
Entire pregnancy	2,311,722	55,565	-5 (-10, 1)		43,770	1 (-5, 8)			
Trimester 1	2,312,489	54,879	-5 (-11, 1)		43,689	2 (-4, 9)			
Trimester 2	2,312,428	51,580	-5 (-11, 1)		47,049	2 (-4, 8)			
Trimester 3	2,312,972	59,609	-6 (-12, 0)		38,476	5 (-2, 12)			

Note: aDiff, adjusted mean difference (grams); CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification.

^aLinear regression models adjusted for inactive well count; child's gestational age, sex, birth month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO₂ concentration, and ICE for income.